Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Soltani, Alireza (Ed.)To interpret the sensory environment, the brain combines ambiguous sensory measurements with knowledge that reflects context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages knowledge about the statistical structure of the task to maximize decision accuracy, including knowledge about the dynamics of the environment. We show that its decisions are biased by the dynamically changing task context. The magnitude of this decision bias depends on the observer’s continually evolving belief about the current context. The model therefore not only predicts that decision bias will grow as the context is indicated more reliably, but also as the stability of the environment increases, and as the number of trials since the last context switch grows. Analysis of human choice data validates all three predictions, suggesting that the brain leverages knowledge of the statistical structure of environmental change when interpreting ambiguous sensory signals.more » « less
-
Soltani, Alireza (Ed.)Feedforward network models performing classification tasks rely on highly convergent output units that collect the information passed on by preceding layers. Although convergent output-unit like neurons may exist in some biological neural circuits, notably the cerebellar cortex, neocortical circuits do not exhibit any obvious candidates for this role; instead they are highly recurrent. We investigate whether a sparsely connected recurrent neural network (RNN) can perform classification in a distributed manner without ever bringing all of the relevant information to a single convergence site. Our model is based on a sparse RNN that performs classification dynamically. Specifically, the interconnections of the RNN are trained to resonantly amplify the magnitude of responses to some external inputs but not others. The amplified and non-amplified responses then form the basis for binary classification. Furthermore, the network acts as an evidence accumulator and maintains its decision even after the input is turned off. Despite highly sparse connectivity, learned recurrent connections allow input information to flow to every neuron of the RNN, providing the basis for distributed computation. In this arrangement, the minimum number of synapses per neuron required to reach maximum memory capacity scales only logarithmically with network size. The model is robust to various types of noise, works with different activation and loss functions and with both backpropagation- and Hebbian-based learning rules. The RNN can also be constructed with a split excitation-inhibition architecture with little reduction in performance.more » « less
-
Soltani, Alireza (Ed.)Cortical circuits generate excitatory currents that must be cancelled by strong inhibition to assure stability. The resulting excitatory-inhibitory (E-I) balance can generate spontaneous irregular activity but, in standard balanced E-I models, this requires that an extremely strong feedforward bias current be included along with the recurrent excitation and inhibition. The absence of experimental evidence for such large bias currents inspired us to examine an alternative regime that exhibits asynchronous activity without requiring unrealistically large feedforward input. In these networks, irregular spontaneous activity is supported by a continually changing sparse set of neurons. To support this activity, synaptic strengths must be drawn from high-variance distributions. Unlike standard balanced networks, these sparse balance networks exhibit robust nonlinear responses to uniform inputs and non-Gaussian input statistics. Interestingly, the speed, not the size, of synaptic fluctuations dictates the degree of sparsity in the model. In addition to simulations, we provide a mean-field analysis to illustrate the properties of these networks.more » « less
-
Soltani, Alireza (Ed.)Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal’s natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an “entice to stay” model) or from aversive stimulus-input (a “repel to leave” model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in “entice to stay” model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data.more » « less
An official website of the United States government
